连续和极限关系问题(连续与可导的关系,连续与是否有极限的关系.)

生活资讯 2023-07-14 23:04:08   点击量 : 14218  

作者 : 生活资讯通

连续和极限关系问题(连续与可导的关系,连续与是否有极限的关系.)

连续和极限关系问题

根据函数在一个点上连续的定义,函数在在一个区间上连续的定义,可以知道函数在某一区间上连续,那么函数在该区间“内”的每一点处一定存在极限。 函数在区间端点处的连续性指的是“单侧连续性”,一定有相对应的单侧极限。 函数在端点处不连续,也可能有单侧极限。

连续与可导的关系,连续与是否有极限的关系.

关于函数的连续与可导:
1、连续的函数不一定可导.
2、可导的函数是连续的函数.
3、越是高阶可导函数曲线越是光滑.
4、存在处处连续但处处不可导的函数.
左导数和右导数存在且“相等”,是函数在该点可导的充要条件
函数连续是函数可导的必要不充分条件

关于函数的连续与是否有极限:
一个函数连续必须有3个条件:
1、在此处有定义
2、在此区间内要有极限
3、.该处极限值等于函数值

有极限不一定连续,但是连续一定有极限.
函数有极限是函数连续的必要不充分条件.

极限 连续 可导 之间有什么关系?

一元函数:可导必然连续,连续推不出可导,可导与可微等价。

对于单元函数 可微和可导是相同的,但对于多元函数则不一样,多元函数中各个偏导函数连续才能推出可微 ,多元函数可微则可以推出各偏导存在、各个方向的方向导数存在。

关于函数的可导导数和连续的关系:

1、连续的函数不一定可导。

2、可导的函数是连续的函数。

3、越是高阶可导函数曲线越是光滑。

4、存在处处连续但处处不可导的函数。左导数和右导数存在且“相等”,才是函数在该点可导的充要条件,不是左极限=右。

扩展资料:

可导的话一定连续,但连续不一定可导。

证连续的一般方法是左极限=右极限,所以如果极限存在的话一定连续,极限存在、连续都不能推出可导。

但反之能推出,证可导的方法除了定义还就是左导-右导;反证这反面的问题很复杂要不断整理才能明白。

多元函数:可偏导与连续之间没有联系,也就是说可偏导推不出连续,连续推不出可偏导。

多元函数中可微必可偏导,可微必连续,可偏导推不出可微,但若一阶偏导具有连续性则可推出可微。

参考资料来源:?百度百科——极限(数学术语)

参考资料来源:百度百科——连续(数学名词)

参考资料来源:百度百科—— 可导

本文来自网络,不代表生活常识网立场,转载请注明出处:http://sdsy56.com/shenghuozixun/248547.html

上一篇:

下一篇:

声明: 我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本站部分文字与图片资源来自于网络,转载是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:15053971836@139.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!

Copyright © 2022-2024 生活常识网 版权所有
生活常识网所有文章及资料均为作者提供或网友推荐收集整理而来,仅供爱好者学习和研究使用,版权归原作者所有。
如本站内容有侵犯您的合法权益,请和我们取得联系,我们将立即改正或删除。客服邮箱:15053971836@139.com

备案号:鲁ICP备2022001955号-6 联系方式:15053971836@139.com

网站地图