生物大分子分别有哪些特征
生物大分子分别有哪些特征
1、在活细胞内,生物大分子和相应的生物小分子之间的互变,通常通过脱水缩合或加水分解。
2、蛋白质链或称肽链、核酸链和糖链都有方向性,尽管方向性的体现各不相同。
3、蛋白质、核酸和多糖分子都有各具特征的高级结构,正确的高级结构是生物大分子执行其生物功能的必要前提。
4、在活细胞中3类生物大分子密切配合,共同参与生命过程,很多情况下形成生命活动必不可少的复合大分子,如核蛋白、糖蛋白。
细胞中4种主要生物大分子单体的碳骨架与功能基团各有哪些特征
狭义细胞骨架(cytoskeleton)概念是指真核细胞中的蛋白纤维网络结构.它所组成的结构体系称为“细胞骨架系统”,与细胞内的 遗传系统 生物膜系统 并称“细胞内的三大系统”.发现较晚,主要是因为一般电镜制样采用低温(0-4℃)固定,而细胞骨架会在低温下解聚.直到20世纪60年代后,采用戊二醛常温固定,才逐渐认识到细胞骨架的客观存在.真核细胞借以维持其基本形态的重要结构,被形象地称为细胞骨架,它通常也被认为是广义上细胞器的一种. 广义细胞骨架概念:在细胞核中存在核骨架-核纤层体系.核骨架、核纤层与中间纤维在结构上相互连接,贯穿于细胞核和细胞质的网架体系.
细胞骨架不仅在维持细胞形态,承受外力、保持细胞内部结构的有序性方面起重要作用,而且还参与许多重要的生命活动,如:在细胞分裂中细胞骨架牵引染色体分离,在细胞物质运输中,各类小泡和细胞器可沿着细胞骨架定向转运;在肌肉细胞中,细胞骨架和它的结合蛋白组成动力系统;在白细胞(白血球)的迁移、精子的游动、神经细胞轴突和树突的伸展等方面都与细胞骨架有关.另外,在植物细胞中细胞骨架指导细胞壁的合成. [编辑本段]微管 微管可在所有哺乳类动物细胞中存在,直径大于12nm,除了红细胞(红血球)外,所有微管均由约55kD的α及β微管蛋白(tubulin)组成.它们 细胞骨架正常时以β二聚体形式存在,并以头尾相连的方式聚合,形成微管蛋白原纤维(protofilament),一般由13根这样的原纤维构成一个中空的微管,直径22~25nm.少数变异的微管如线虫等所有的则有其他数目的原纤维.微管确定膜性细胞器(membrane-enclosed organelle)的位置和作为膜泡运输的导轨.微管是细胞骨架的架构主干,并也是某些胞器的主体,例如中心粒(centriole)就是由9组3联微管组成的构造,而真核生物的纤毛(cilium)与鞭毛(flagellum)也是由以微管为9+2结构,即由9个二联微管和一对中央微管构成,其中二联微管由AB两个管组成,A管由13条原纤维组成,B管由10条原纤维组成,两者共享5条.A管对着相邻的B管伸出两条动力蛋白臂,并向鞭毛中央发出一条辐.基体的微管组成为9+0,并且二联微管为三联微管所取代,结构类似于中心粒.组成的轴丝(axoneme)为主体.
从各种组织中提纯微管蛋白可以发现还存在一些其他蛋白成分(5%-20%),称之谓微管相关蛋白(microtube associated proteins MAPs).这些蛋白具有组织特异性,表现出从相同αβ二聚体聚合形成的微管具有独特的性质,已从人类不同组织中发现了多种α及β微管蛋白,并追踪微管基因表现出部分基因家族,某些基因被认为是编码独特的微管蛋白.
微管形成的有些结构是比较稳定的,是由于微管结合蛋白的作用和酶修饰的原因.如神经细胞轴突、纤毛和鞭毛中的微管纤维.大多数微管纤维处于动态的聚合和灾变(一种突然的,迅速的,一般不可逆转的分解)状态,这是实现其功能所必需的性质(如纺锤体).与秋水仙素(colchicine)结合的微管蛋白可加合到微管上,并阻止其他微管蛋白单体继续添加,进而破坏纺锤体的结构,长春花碱具有类似的功能.紫杉酚(taxol),能促进微管的聚合,并使已形成的微管稳定,然而这种稳定性会破坏微管的正常功能.这些药物可以利用破坏微管功能以阻止细胞分裂,成为癌症治疗的新希望.
生物大分子名词解释
分子生物学的解释
在分子水平上 研究 生物大分子的结构与功能,从而揭示 生命 现象的本质的科学。主要研究蛋白质和核酸的结构与功能,生物膜的结构与功能,并在分子水平上研究生物界的基本 特征 。
词语分解
分子的解释构成某一整体的各个体;归属某 社会 群体的人劳改分子积极分子详细解释.支庶之子孙。《谷梁传·庄公三十年》:“北伐 山戎 ,危之也。则非之乎?善之也。何善乎尔? 燕 , 周 之分子也。” 范宁 注:“分子 生物学的解释研究生物包括 动物 、植物和微生物的结构、功能、发生和发展 规律 的科学。
常见的生物大分子有哪些
生物大分子指的是作为生物体内主要活性成分的各种分子量达到上万或的有机分子。常见的生物大分子包括蛋白质、核酸、脂类、糖类。糖类代谢与脂类代谢之间的关系应该清楚,糖类与脂肪之间的转化是双向的,但它们之间的转化程度不同,糖类可以大量形成脂肪,例如酵母菌放在含糖培养基中培养,细胞内就能够生成脂类,个别种类的酵母菌合成的脂肪可以高在这酵母菌干重的40%;然而脂肪却不能大量转化为糖类,例如某些动物在冬眠的时候,脂肪可以转变成糖类。糖类代谢与蛋白质代谢的关系首先使明确必需氨基酸和非必需氨基酸的概念:所谓非必需氨基酸是指在人体细胞中可能合成的氨基酸;所谓必需氨基酸是指在人体细胞中不能合成的氨基酸,人体的必需氨基酸共有8种,它们是赖氨酸、色氨酸、苯丙氨酸、亮氨酸、异亮氨酸、苏氨酸、甲硫氨酸。然后应指出糖类与蛋白质之间的转化也可以是双向的:糖类代谢的中间产物可以转变成非必需氨基酸,但糖类不能转化为必需氨基酸,因此糖类转变蛋白质的过程是不全面的;然而几乎所有组成蛋白质的天然氨基酸通过脱氨基作用后,产生的不含氮部分都可以转变为糖类,例如,用蛋白质饲养患人工糖尿病的狗,则有50%以上的食物蛋白质可以转变成葡萄糖。蛋白质代谢与脂类代谢的关系蛋白质与脂类之间的转化依不同的生物而有差异,例如人和动物不容易利用脂肪合成氨基酸,然而植物和微生物则可由脂肪酸和氮源生成氨基酸;某些氨基酸通过不同的途径也可转变成甘油和脂肪酸,例如用只含蛋白质的食物饲养动物,动物也能在体内存积脂肪。糖类、蛋白质和脂类的代谢之间相互制约糖类可以大量转化成脂肪,而脂肪却不可以大量转化成糖类。只有当糖类代谢发生障碍时才由脂肪和蛋白质来供能,当糖类和脂肪摄入量都不足时,蛋白质的分解才会增加。例如糖尿病患者糖代谢发生障碍时,就由脂肪和蛋白质来分解供能,因此患者表现出消瘦。
生物大分子是什么
像氨基酸、脂肪酸等都叫做生物单分子,是与生命有着密切关系的物质,它们是构成大分子的基本物质。
生物大分子是构成生命的基础物质,包括蛋白质、核酸、碳氢化合物等。
生物大分子指的是作为生物体内主要活性成分的各种分子量达到上万或更多的有机分子。
常见的生物大分子包括蛋白质、核酸、脂质、糖类。
如果我的回答帮到了你,请点“采纳”。
本文来自网络,不代表生活常识网立场,转载请注明出处:http://sdsy56.com/shenghuozixun/185134.html
上一篇: 芒笋是一种什么样的菜
下一篇: 芒硝的作用
声明: 我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本站部分文字与图片资源来自于网络,转载是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:15053971836@139.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!
相关阅读