实数集的定义(什么是实数的定义)
实数集的定义
实数集通俗地认为,通常包含所有有理数和无理数的集合就是实数集。18世纪,微积分学在实数的基础上发展起来。但当时的实数集并没有精确的定义。直到1871年,德国数学家康托尔第一次提出了实数的严格定义。任何一个非空有上界的集合必有上确界。
什么是实数的定义
实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。
性质 封闭性
实数集R对加、减、乘、除(除数不为零)四则运算具有封闭性,即任意两个实数的和、差、积、商(除数不为零)仍然是实数。
有序性
实数集是有序的,即任意两个实数a、b必定满足下列三个关系之一:a<b,a=b,a>b。
传递性
实数大小具有传递性,即若a>b,b>c,则有a>c。
阿基米德性
实数具有阿基米德(Archimedes)性,即对任何a,b∈R,若b>a>0,则存在正整数n,使得na>b。
稠密性
实数集R具有稠密性,即两个不相等的实数之间必有另一个实数,既有有理数,也有无理数。
实数集与有理数集有什么本质区别
1、包含范围不同
有理数集中包含了分数和整数;
实数集包含了所有有理数和无理数。
2、符号不同
有理数集可以用大写黑正体符号Q代表;
实数集可以用大写黑正体符号R代表。
扩展资料:
一、有理数
有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。
由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。
有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。
二、实数集
18世纪,微积分学在实数的基础上发展起来,但当时的实数集并没有精确的定义,直到1871年,德国数学家康托尔第一次提出了实数的严格定义:任何一个非空有上界的集合(包含于R)必有上确界。
参考资料:-有理数
参考资料:-实数集
本文来自网络,不代表生活常识网立场,转载请注明出处:http://sdsy56.com/shenghuozixun/103481.html
上一篇: 兰芝好还是雪花秀好
下一篇: 汽车蓄电池的跨接线怎么使用
声明: 我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本站部分文字与图片资源来自于网络,转载是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:15053971836@139.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!
相关阅读