抛物线顶点坐标公式
y=a(x-h)² k (a≠0,k为常数)
顶点坐标是用来表示二次函数抛物线顶点的位置的参考指标,顶点式:y=a(x-h)² k (a≠0,k为常数)顶点坐标:【-b/2a,(4ac-b²)/4a】。
当h>0时,y=a(x-h) 的图象可由抛物线y=ax2;向右平行移动h个单位得到;
当h<0时,则向左平行移动|h|个单位得到;<>
当h>0,k>0时,将抛物线y=ax向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h) k的图象。
公式
1.y=ax² bx c(a≠0)←一般式
2.y=ax²(a≠0)
3.y=ax² c(a≠0)
4.y=a(x-h)²(a≠0)
5.y=a(x-h)² k,y=a(x h)² k(a≠0)←顶点式
6.y=a(x-x₁)(x-x₂)(a≠0)←交点式
7.【-b/2a,(4ac-b²)/4a】(a≠0,k为常数,x≠h)←求顶点坐标的公式
一元二次方程顶点坐标
[-b/2a,(4ac-b²)/4a]。顶点坐标是用来表示二次函数抛物线顶点的位置的参考指标,顶点式:y=a(x-h)² k(a≠0,k为常数)。
一元二次方程
只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。一元二次方程经过整理都可化成一般形式ax² bx c=0(a≠0)。其中ax²叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。成立条件如下:
①是整式方程,即等号两边都是整式,方程中如果有分母;且未知数在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不是一元二次方程(是无理方程)。
②只含有一个未知数;
③未知数项的最高次数是2。
补充
抛物线的一个描述涉及一个点(焦点)和一条线(准线)。焦点并不在准线上。抛物线是该平面中与准线和焦点等距的点的轨迹。抛物线的另一个描述是作为圆锥截面,由圆锥形表面和平行于锥形母线的平面的交点形成。第三个描述是代数。
垂直于准线并通过焦点的线(即通过中间分解抛物线的线)被称为“对称轴”。与对称轴相交的抛物线上的点被称为“顶点”,并且是抛物线最锋利弯曲的点。沿着对称轴测量的顶点和焦点之间的距离是“焦距”。 “直线”是抛物线的平行线,并通过焦点。
抛物线可以向上,向下,向左,向右或向另一个任意方向打开。任何抛物线都可以重新定位并重新定位,以适应任何其他抛物线 - 也就是说,所有抛物线都是几何相似的。
本文来自网络,不代表生活常识网立场,转载请注明出处:http://sdsy56.com/ertongjiaoyu/51567.html
上一篇: 路程公式
下一篇: 补办驾驶证需要多长时间能下来
声明: 我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本站部分文字与图片资源来自于网络,转载是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:15053971836@139.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!
相关阅读