108的因数有哪些(1至100的因数有哪些?)
108的因数有哪些
108的因数有1、2、3、4、6、9、12、18、27、36、54、108。108=1×108;108=2×54;108=3×56;108=4×27;108=6×18;108=9×12;所以108的因数有1、2、3、4、6、9、12、18、27、36、54、108共12个。小学数学定义:假如a*b=c(a、b、c都是整数),那么我们称a和b就是c的因数。需要注意的是,唯有被除数,除数,商皆为整数,余数为零时,此关系才成立。
定义
在小学数学里,两个正整数相乘,那么这两个数都叫做积的因数,或称为约数。小学数学定义:假如a×b=c(a、b、c都是整数),那么我们称a和b就是c的因数。需要注意的是,唯有被除数,除数,商皆为整数,余数为零时,此关系才成立。反过来说,我们称c为a、b的倍数。在研究因数和倍数时,小学数学不考虑0。
事实上因数一般定义在整数上:设A为整数,B为非零整数,若存在整数Q,使得A=QB,则称B是A的因数,记作B|A。但是也有的作者不要求B≠0。
例如:2X6=12,2和6的积是12,因此2和6是12的因数。12是2的倍数,也是6的倍数。
3X(-9)=-27,3和-9都是-27的因数。-27是3和-9的倍数。
一般而言,整数A乘以整数B得到整数C,整数A与整数B都称作整数C的因数,反之,整数C为整数A的倍数,也为整数B的倍数。
相关性质
1、整除:若整数a除以非零整数b,商为整数,且余数为零,我们就说a能被b整除(或说b能整除a),记作b|a。2、质数﹙素数﹚:恰好有两个正因数的自然数。(或定义为在大于1的自然数中,除了1和此整数自身两个因数外,无法被其他自然数整除的数)。
3、合数:除了1和它本身还有其它正因数。
4、1只有正因数1,所以它既不是质数也不是合数。
5、若a是b的因数,且a是质数,则称a是b的质因数。例如2,3,5均为30的质因数。6不是质数,所以不算。7不是30的因数,所以也不是质因数。
6、公因数只有1的两个非零自然数,叫做互质数。
7、1个非零自然数的正因数的个数是有限的,其中最小的是1,最大的是它本身。而一个非零自然数的倍数的个数是无限的。
8、所有不为零的整数都是0的因数。(还有争议)
9、2是最小的质数。
10、4是最小的合数。
1至100的因数有哪些?
1: 1
2: 1,2
3: 1,3
4: 1,2,4
5: 1,5
6: 1,2,3,6
7: 1,7
8: 1,2,4,8
9: 1,3,9
10: 1,2,5,10
11: 1,11
12: 1,2,3,4,6,12
13: 1,13
14: 1,2,7,14
15: 1,3,5,15
16: 1,2,4,8,16
17: 1,17
18: 1,2,3,6,9,18
19: 1,19
20: 1,2,4,5,10,20
21: 1,3,7,21
22: 1,2,11,22
23: 1,23
24: 1,2,3,4,6,8,12,24
25: 1,5,25
26: 1,2,13,26
27: 1,3,9,27
28: 1,2,4,7,14,28
29: 1,29
30: 1,2,3,5,6,10,15,30
31: 1,31
32: 1,2,4,8,16,32
33: 1,3,11,33
34: 1,2,17,34
35: 1,5,7,35
36: 1,2,3,4,6,9,12,18,36 37: 1,37
38: 1,2,19,38
39: 1,3,13,39
40: 1,2,4,5,8,10,20,40
41: 1,41
42: 1,2,3,6,7,14,21,42
43: 1,43
44: 1,2,4,11,22,44
45: 1,3,5,9,15,45
46: 1,2,23,46
47: 1,47
48: 1,2,3,4,6,8,12,16,24,48 49: 1,7,
491,49,7
50: 1,2,5,10,25,50
51: 1,3,17,51
52: 1,2,4,13,26,52
53: 1,53
54: 1,2,3,6,9,18,27,54
55: 1,5,11,55
56: 1,2,4,7,8,14,28,56
57: 1,3,19,57
58: 1,2,29,58
59: 1,59
60: 1,2,3,4,5,6,10,12,15,20,30,60
61: 1,61
62: 1,2,31,62
63: 1,3,7,9,21,63
64: 1,2,4,8,16,32,64
65: 1,5,13,65
66: 1,2,3,6,11,22,33,66
67: 1,67
68: 1,2,4,17,34,68
69: 1,3,23,69
70: 1,2,5,7,10,14,35,70
71: 1,71
72: 1,2,3,4,6,8,9,12,18,24,36,72 73: 1,
73:1,73
74: 1,2,37,74
75: 1,3,5,15,25,75
76: 1,2,4,19,38,76
77: 1,7,11,77
78: 1,2,3,6,13,26,39,78
79: 1,79
80: 1,2,4,5,8,10,16,20,40,80?
81: 1,3,9,27,81
82: 1,2,41,82
83: 1,83
84: 1,2,3,4,6,7,12,14,21,28,42,84?
85: 1,5,17,85
86: 1,2,43,86
87: 1,3,29,87
88: 1,2,4,8,11,22,44,88
89: 1,89
90: 1,2,3,5,6,9,10,15,18,30,45,90
91: 1,7,13,91
92: 1,2,4,23,46,92
93: 1,3,31,93
94: 1,2,47,94
95: 1,5,19,95
96: 1,2,3,4,6,8,12,16,24,32,48,96 97: 1,
97:1, 97
98: 1,2,7,14,49,98
99: 1,3,9,11,33,99
100: 1,2,4,5,10,20,25,50,100
扩展资料: 因数的相关性质:
1、整除:若整数a除以非零整数b,商为整数,且余数为零, 我们就说a能被b整除(或说b能整除a),记作b|a。
2、质数﹙素数﹚:恰好有两个正因数的自然数。(或定义为在大于1的自然数中,除了1和此整数自身外两个因数,无法被其他自然数整除的数)。
3、合数:除了1和它本身还有其它正因数。
4、1只有正因数1,所以它既不是质数也不是合数。
5、若a是b的因数,且a是质数,则称a是b的质因数。例如2,3,5均为30的质因数。6不是质数,所以不算。7不是30的因数,所以也不是质因数。
6、公因数只有1的两个非零自然数,叫做互质数。
7、1个非零自然数的正因数的个数是有限的,其中最小的是1,最大的是它本身。而一个非零自然数的倍数的个数是无限的。
8、所有不为零的整数都是0的因数。
9、2是最小的质数。
10、4是最小的合数。
以上便是生活常识网整理的有关于108的因数有哪些的全部内容,喜欢可以关注我们了解更多相关资讯。
本文来自网络,不代表生活常识网立场,转载请注明出处:http://sdsy56.com/ertongjiaoyu/133702.html
上一篇: 2023的因数
下一篇: 49的因数
声明: 我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本站部分文字与图片资源来自于网络,转载是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:15053971836@139.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!
相关阅读